A Review of E-textiles in Neurological Rehabilitation: How Close Are We?

Date
2016
Authors
McLaren, R
Joseph, F
Baguley, C
Taylor, D
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
Abstract

Textiles able to perform electronic functions are known as e-textiles, and are poised to revolutionise the manner in which rehabilitation and assistive technology is provided. With numerous reports in mainstream media of the possibilities and promise of e-textiles it is timely to review research work in this area related to neurological rehabilitation.This paper provides a review based on a systematic search conducted using EBSCO- Health, Scopus, AMED, PEDro and ProQuest databases, complemented by articles sourced from reference lists. Articles were included if the e-textile technology described had the potential for use in neurological rehabilitation and had been trialled on human participants. A total of 108 records were identified and screened, with 20 meeting the broad review inclusion criteria. Nineteen user trials of healthy people and one pilot study with stroke participants have been reported.The review identifies two areas of research focus; motion sensing, and the measurement of, or stimulation of, muscle activity. In terms of motion sensing, E-textiles appear able to reliably measure gross movement and whether an individual has achieved a predetermined movement pattern. However, the technology still remains somewhat cumbersome and lacking in resolution at present. The measurement of muscle activity and the provision of functional electrical stimulation via e-textiles is in the initial stages of development but shows potential for e-textile expansion into assistive technologies.The review identified a lack of high quality clinical evidence and, in some cases, a lack of practicality for clinical application. These issues may be overcome by engagement of clinicians in e-textile research and using their expertise to develop products that augment and enhance neurological rehabilitation practice.

Description
Keywords
Conductive elastomers , E-textiles , Electronic textiles , Functional electrical stimulation , Knitted piezoresistive transducers , Rehabilitation , Smart fabrics , Telerehabilitation , Transcutaneous electrical stimulation
Source
Journal of NeuroEngineering and Rehabilitation (2016) 13:59. DOI 10.1186/s12984-016-0167-0
Rights statement
© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Collections